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Abstract. The thermal entry region in laminar flow of Bingham plastics within concentric
annular ducts is solved analytically through the classical integral transform technique.
Boundary conditions of first kind are prescribed either at inner or outer wall duct in order to
verify the effects on the temperature field in the fluid. Nusselt numbers are calculated along
both the thermal entry and fully-developed regions with high accuracy for different yield
numbers and aspect ratios which are systematically tabulated and graphically presented.
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1. INTRODUCTION

Viscoplastic materials are those that present a minimum shear stress termed as yield
stress, which must be exceeded in order to start the flow. Rheological models included into
this category are those that follow the Herschel-Bulkley model or a Bingham plastic model
(Bird et al., 1987), which is one of the simplest equation that describes the behavior of
viscoplastic materials.

There are numerous industrial applications involving fluids behaving in this manner,
mainly in chemical, pharmaceutical, food, petroleum and petrochemical industries where we
can find the processing of toothpaste, molten plastics, aqueous foams, slurries and paper pulp.
Bird et al. (1982) have done an extensive compilation of materials presenting a yield stress.

An important industrial application concerning to flow of a Bingham plastic is that where
during a drilling operation in the petroleum industry certain muds are pumped through the
annular space between the drill and the well, in order to provide a good operation and the well
cementing. These muds generally are described for a Herschel-Bulkley model, but under
certain circumstances the Bingham plastic model can be employed to characterize their



behavior. The physical properties of these fluids are very sensitive to the temperature, and
consequently this affects the velocity profile and the temperature field itself, which are
important roles for the complete control of the drilling operation.

Few works dealing with the heat and fluid flow of Bingham plastics within concentric
annular ducts are encountered in the literature despite their important industrial applications,
as that pointed out above. Among these works are included those by Laird (1957),
Fredrickson and Bird (1958) and Anshus (1974), in these works the authors have determined
the complete characteristics of the flow. On the other hand, heat transfer problems in which
viscoplastic materials such as Bingham fluids or Herschel-Bulkley fluids are involved, mostly
concern to circular duct and parallel-plates geometry as those by Forrest and Wilkinson
(1973), Blackwell (1985), Nouar et al. (1994, 1995), Mendes and Naccache (1995), Vradis et
al. (1993), Min et al. (1997) and Vradis and Hammad (1995).

Thus, in this context, the present work aims at advancing the ideas of the classical and
generalized integral transform techniques and the so-called sign-count approach in order to
determine the characteristics of the heat and fluid flow of Bingham plastics within annular
passages, by calculating the product between the friction factor and Reynolds number, as well
as, Nusselt numbers along both, the thermal entry and fully-developed regions, with high
accuracy. Comparisons with previous works in the literature are performed, for typical
situations, in order to validate the numerical code developed here.

2. ANALYSIS

The rheological behavior of the non-newtonian fluid described here is given by the
Bingham plastic model in the following form:

dr

du
00rz µ−τ±=τ ;   if   0rz τ≥τ  (1.a)

0
dr

du = ;                     if  0rz τ<τ  (1.b)

where, τrz is the shear stress, τ0 is the yield stress and µ0 is the plastic viscosity of the fluid.
Here the + sign is used when the transport of momentum is done in the + r-direction and the -
sign is used when momentum is being transported in the - r-direction.

For the fully-developed region of a concentric annular duct, the momentum equation in
the axial coordinate z, is simplified to yield:
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subjected  to  the following boundary conditions

u = 0   at   iwrr =    and   u = 0   at   owrr = (2.b, c)

Then, introducing Eqs. (1) in Eq. (2.a), and after the integrations are performed, the fully-
developed velocity profile in three ranges for Bingham plastic fluids is given by:
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where a* and b* are the bounds on the plug-flow region, c* is the value of the radial
coordinate for which the shear stress is zero. The velocity profile on the plug-flow region

)r(u0  is given by Eq. (3.b) or (3.c), these equations are obtained by making r = a* in Eq. (3.a)
and r = b* in Eq. (3.d), respectively, and they furnish the same values for the velocity profile

)r(u0 .

Figure 1 - Geometry and coordinate system of the problem

The velocity profile given by Eqs. (3) for a Bingham plastic fluid is split in three distinct
regions, one *br *a ≤≤  which denotes the plug-flow region where 0rz τ<τ , and the fluid

behaves like a solid plug, and other two regions for *ar riw ≤≤  and for owrr*b ≤≤  where

0rz τ≥τ , and refer to those parts of fluid which are in shear flow.

In the analysis of the thermal problem, we consider steady-state laminar forced
convection heat transfer to hydrodinamically developed flow, in thermal entry region of
incompressible non-newtonian fluid that follows the Bingham plastic model, described by
Eqs. (1) and (3), inside concentric annular ducts maintained at prescribed wall temperatures

iwT  and owT  (Figure 1). The fluid enters the channel with a constant uniform temperature eT .

Axial heat conduction and viscous dissipation are neglected and the physical properties are
considered temperature independent. Here, interest is given on the fundamental formulation
where the boundary conditions are of first kind, either inner or outer wall duct in the
following form: eiw TT =  (case A) or eow TT =  (case B).

iwr  a*  b*  owrr

iwT

owTeT

u(r)

 c*

z



Then, the mathematical formulation of this heat transfer problem in dimensionless form is
defined by:
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subject to the inlet and boundary conditions:

1R,0)0,R( ≤≤γ=θ (4.b)

m1)Z,( −=γθ    and   m)Z,1( =θ ,      Z > 0 (4.c, d)

where in the boundary conditions (4.c, d), the coefficient m identifies whether it refers to the
case A (m = 1) or to the case B (m = 0).

In Eqs. (4) above the following dimensionless groups were used:
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where )rr(2D iwowh −=  is the hydraulic diameter.

The velocity profile given by Eqs. (3) is written in dimensionless form by introducing the
groups (5), or
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and, the dimensionless bounds on the plug-flow region, a and b, and the dimensionless radial
coordinate where the shear stress is zero, c, are related through the following equations:

Ref

)1(Y2
ba

γ−−= ,        bac = (7, 8)

The definitions of these quantities, a, b and c are given below, as well as, of the additional
groups employed in Eqs. (6)-(8) which are Y (the yield number) and f (the Fanning friction
factor), i.e.,
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The Fanning friction factor and the dimensionless bounds on the plug-flow region are
functions of the Reynolds and yield numbers. The determination of these quantities is
obtained by satisfying the average flow velocity and by equalizing Eqs. (6.b) and (6.c), which
together with Eq. (7) provide a system of three equations to find fRe, a and b, once these
quantities have been determined the parameter c is readily calculated from Eq. (8). Table 1
shows some results for these parameters described above, for different yield numbers, Y, and
aspect ratios, γ. It can be observed that for increasing yield numbers the region of plug-flow
increases as was expected. From this table the case Y = 0 corresponds to the newtonian
situation and in it, there is not a plug-flow region as verified by finding the same values for
the parameters a, b and c. It can also be noticed that for this situation of Y = 0, at high values
of aspect ratios, for example γ = 0.9, the product fRe is near to that of the case of parallel-
plates channel, i.e., fRe ≈ 24.

Table 1 - Product fRe and parameters a, b and c computed from the present analysis

Y = 0 Y = 1
γ f Re a. b. c. f Re a. b. c.

0.1 22.343 0.4636 0.4636 0.4636 25.223 0.4232 0.4945 0.4574
0.3 23.461 0.6147 0.6147 0.6147 26.417 0.5861 0.6391 0.6120
0.5 23.812 0.7355 0.7355 0.7355 26.793 0.7160 0.7533 0.7344

0.7 23.949 0.8455 0.8455 0.8455 26.940 0.8341 0.8564 0.8452
0.9 23.996 0.9496 0.9496 0.9496 26.990 0.9458 0.9532 0.9495

γ Y = 5 Y = 10
0.1 36.459 0.3321 0.5790 0.4385 49.877 0.2797 0.6406 0.4233
0.3 37.941 0.5184 0.7029 0.6037 51.668 0.4766 0.7476 0.5969
0.5 38.413 0.6687 0.7989 0.7309 52.242 0.6386 0.8300 0.7280
0.7 38.597 0.8061 0.8838 0.8441 52.468 0.7880 0.9024 0.8432

0.9 38.660 0.9366 0.9624 0.9494 52.544 0.9304 0.9685 0.9493

Now, attention is focussed for the solution of the heat transfer problem given by Eqs. (4)
through the classical integral transform technique (Mikhailov and Özisik, 1984; Cotta, 1993).
In order to make the boundary conditions (4.c, d) homogeneous, so that a better computational
performance in the series expansion can be obtained, a splitting-up procedure is proposed as
(Mikhailov, 1977; Mikhailov and Özisik, 1984):

)Z,R()R()Z,R( hp θ+θ=θ  (10)

After introducing Eq. (10) into Eqs. (4), the following problems for the potentials θp(R)
and θp(R,Z) are obtained:
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The homogeneous problem defined above by Eqs. (13) can also be solved by the classical
integral transform technique. Then, following the procedures in the application of this
technique, the appropriate auxiliary eigenvalue problem is taken as:
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where ψi(R) and µi are, respectively, the eigenfunctions and eigenvalues. The eigenvalue
problem allows for the development of the following integral transform pair:
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Now, Eq. (13) is integral transformed by operating it with ∫γψ
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following ordinary differential equation for the transformed potential, )Z(i,hθ :
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with the transformed potential inlet condition given by:
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The solution for the transformed potential )Z(i,hθ  is readily obtained as:
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Then, introducing Eq.(18) into the inversion formula (15.a), the solution for )Z,R(hθ is
determined in the form:
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Thus, by combining Eq. (12) for θp(R) with Eq. (19) for )Z,R(hθ , the complete solution

for the original potential θ(R,Z) is written as:
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From Eq. (20) for θ(R,Z) quantities of practical interest such as average flow temperature
and Nusselt numbers can be determined.

The average flow temperature θav(Z) is defined as:

∫∫ γγ
θ=θ
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Thus, by introducing Eq. (20) into Eq. (21), the θav(Z) is readily obtained from the
following equation:
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The local Nusselt numbers at inner and outer walls are given by:
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By taking the derivative of Eq. (20) and evaluating it at R = γ or R = 1, in conjunction
with Eq. (22) for the average flow temperature θav(Z), the solutions for the local Nusselt
numbers at inner and outer walls can be readily determined from Eqs. (24) and (25),
respectively.

3. RESULTS AND DISCUSSION

First, the eigenquantities related to eigenvalue problem (14) were obtained by two
approaches, generalized integral transform technique (Cotta, 1993) and sign-count method
(Mikhailov and Özisik, 1984). The results obtained through the two approaches are in perfect
agreement, but due to space limitations they are not listed here. Then the average temperature,
θav(Z), and local Nusselt numbers, Nuiw(Z) and Nuow(Z), for the two cases of fundamental
situations of the boundary conditions were calculated.



In Table 2, the present results are validated against previous results for Newtonian fluids
(i.e., Y = 0) presented by Shah and London (1978), in thermal entry region, for the following
values of aspect ratio γ = 0.1; 0.25 and 0.5. From these table, it can be noticed that the results
are in excellent agreement, providing a direct validation of the numerical code developed in
this work.

Table 2 - Local Nusselt numbers and average flow temperature in thermal entry region for
different values of aspect ratio and Y = 0 (Newtonian fluids)

Case A Case B
γ Z Nuiw Nuow θav Nuiw Nuow θav

1.0E-5
__ 52.340*

52.336+
0.00282*
0.00287+

80.328*
80.324+

__ 0.00047*
0.00043+

1.0E-4
__ 23.890

23.888
0.01303
0.01308

40.770
40.767

__ 0.00215
0.00210

0.10
1.0E-3

__ 10.913
10.912

0.05827
0.05832

22.257
22.192

__ 0.01099
0.01094

1.0E-2
0.1661*
0.1550+

5.3590
5.3590

0.24529
0.24530

13.761
13.762

0.0664*
0.0640+

0.06134
0.06131

1.0E-1
9.7921
9.7920

3.4131
3.4130

0.70058
0.70058

10.702
10.702

2.9332
2.9330

0.23388
0.23388

∞
10.459
10.459

3.0953
3.0950

0.74744
0.74744

10.459
10.459

3.0953
3.0950

0.25256
0.25256

γ Z Nuiw Nuow θav Nuiw Nuow θav

1.0E-5
___ 53.417*

53.414+
0.00254*
0.00257+

66.558*
66.555+

___ 0.00082*
0.00079+

1.0E-4
___ 24.439

24.438
0.01173
0.01176

32.069
32.067

___ 0.00378
0.00375

0.25
1.0E-3

___ 11.204
11.204

0.05270
0.05273

16.139
16.138

___ 0.01829
0.01826

1.0E-2
0.1335*
0.1300+

5.5175
5.5170

0.22474
0.22473

9.0751
9.0730

0.0813*
0.0830+

0.09229
0.09229

1.0E-1
6.1408
6.1410

3.4936
3.4940

0.63474
0.63474

6.6405
6.6410

3.1201
3.1200

0.31232
0.31231

∞
6.4714
6.4710

3.2670
3.2670

0.66880
0.66880

6.4714
6.4710

3.2670
3.2670

0.33120
0.33120

γ Z Nuiw Nuow θav Nuiw Nuow θav

1.0E-5
___ 54.736*

54.733+
0.00218*
0.00220+

60.544*
60.543+

___ 0.00122*
0.00121+

1.0E-4
___ 25.144

25.142
0.01005
0.01007

28.456
28.455

___ 0.00565
0.00563

0.50
1.0E-3

___ 11.606
11.605

0.04548
0.04549

13.702
13.701

___ 0.02644
0.02642

1.0E-2
0.1177*
0.1160+

5.7614
5.7610

0.19783
0.19773

7.2460
7.2760

0.0932*
0.0920+

0.12498
0.12488

1.0E-1
4.6715
4.6710

3.6979
3.6980

0.56327
0.56325

5.0370
5.0370

3.3737
3.3740

0.38997
0.38995

∞
4.8890
4.8890

3.5204
3.5200

0.59019
0.59018

4.8890
4.8890

3.5204
3.5200

0.40981
0.40982

* Present work,   + Shah and London (1978)

In Figs. 2 - 7 the results of axial distribution of the local Nusselt numbers along the
thermal entry region are presented, for different yield numbers and aspect ratios. It is verified
an increasing of the Nusselt numbers for increasing yield numbers; this fact can be explained
by high gradients in the velocity field near to the wall when the yield number increases. This
effect tends to disappear for the fully-developed regions where the curves are practically
coincident.



Finally, from these figures it can be also observed that the Nusselt numbers for the two
cases studied here, Nuiw(Z) and Nuow(Z), tend to the same distribution when the aspect ratio
increases. For example, for the case of aspect ratio γ = 0.9, which practically represents a
parallel-plates channel, this symmetry is clearly observed.
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Figure 2 - Local Nusselt numbers in thermal entry
region for different values of yield
numbers and γ = 0.1
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Figure 3 - Local Nusselt numbers in thermal entry
region for different values of yield
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Figure 4 - Local Nusselt numbers in thermal entry
region for different values of yield
numbers and γ = 0.4
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Figure 5 - Local Nusselt numbers in thermal entry
region for different values of yield
numbers and γ = 0.5
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Figure 6 - Local Nusselt numbers in thermal entry
region for different values of yield
numbers and γ = 0.8
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Figure 7 - Local Nusselt numbers in thermal entry
region for different values of yield
numbers and γ = 0.9

4. CONCLUSIONS

The problem of laminar convective heat transfer in thermal entry and fully-developed
flow regions of Bingham plastics, for two fundamentals situations of boundary conditions of
first kind in concentric annular ducts, has been analyzed by the classical integral transform



technique in conjunction with the sign-count method and generalized integral transform
technique for the solution of the related eigenvalue problem.

Results for axial distributions of θav, Nuiw(Z) (case A) and Nuow(Z) (case B) were
presented in tabular form which were validated with previous results for newtonian fluids.
Results of Nusselt numbers were graphically presented for different values of aspect ratios
and yield numbers in thermal entry and fully-developed regions.
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